Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 Nanotechnology 28 27LT01
(http://iopscience.iop.org/0957-4484/28/27/27LT01)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 124.16.78.113
This content was downloaded on 22/06/2017 at 16:09

Please note that terms and conditions apply.

You may also be interested in:

Synthesis, properties and applications of 2D non-graphene materials
Feng Wang, Zhenxing Wang, Qisheng Wang et al.

Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation
Nilanthy Balakrishnan, Zakhar R Kudrynskyi, Emily F Smith et al.

Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors
Xing Zhou, Nan Zhou, Chao Li et al.

Solution-processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics
S Mukherjee, S Biswas, S Das et al.

Photonics and optoelectronics of two-dimensional materials beyond graphene
Joice Sophia Ponraj, Zai-Quan Xu, Sathish Chander Dhanabalan et al.

Van der Waals stacked 2D layered materials for optoelectronics
Wenjing Zhang, Qixing Wang, Yu Chen et al.

Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices
Xuefei Li, Xiong Xiong and Yanqing Wu

Optoelectronics based on 2D TMDs and heterostructures
Nengjie Huo, Yujue Yang and Jingbo Li

Atomically thin lateral p–n junction photodetector with large effective detection area
Zai-Quan Xu, Yupeng Zhang, Ziyu Wang et al.
Letter

Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures

Faguang Yan1, Lixia Zhao2,3, Amalia Patanè4, PingAn Hu5, Xia Wei1, Wengang Luo1, Dong Zhang1, Quanshan Lv1, Qi Feng1, Chao Shen1,3, Kai Chang1,3, Laurence Eaves4 and Kaiyou Wang1,3

1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People’s Republic of China
2 State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 10083, People’s Republic of China
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
4 School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
5 Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, Harbin, 150080, People’s Republic of China

E-mail: kywang@semi.ac.cn

Received 7 April 2017, revised 16 May 2017
Accepted for publication 22 May 2017
Published 14 June 2017

Abstract

The integration of different two-dimensional materials within a multilayer van der Waals (vdW) heterostructure offers a promising technology for high performance opto-electronic devices such as photodetectors and light sources. Here we report on the fabrication and electronic properties of vdW heterojunction diodes composed of the direct band gap layered semiconductors InSe and GaSe and transparent monolayer graphene electrodes. We show that the type II band alignment between the two layered materials and their distinctive spectral response, combined with the short channel length and low electrical resistance of graphene electrodes, enable efficient generation and extraction of photoexcited carriers from the heterostructure even when no external voltage is applied. Our devices are fast ($\sim2\ \mu$s), self-driven photodetectors with multicolor photoresponse ranging from the ultraviolet to the near-infrared and offer new routes to miniaturized optoelectronics beyond present semiconductor materials and technologies.

Supplementary material for this article is available online

Keywords: multicolor, gallium selenide, indium selenide, van der Waals heterostructure, built-in potential

(Some figures may appear in colour only in the online journal)

Introduction

Multicolor photodetectors covering the ultraviolet (UV), visible and infrared (IR) spectral ranges have potential for a wide range of applications, such as optical communication [1, 2], imaging [3], environmental monitoring [4] and astronomical observations [5]. Furthermore, robust and miniaturized self-driven devices, which require no electrical power source, are of particular interest for applications in extreme conditions. Self-driven multicolor photodetectors using
semiconductor heterojunctions, such as MoS$_2$/Si [6], CuO/Si [7], Bi$_2$Se$_3$/Si [8] and MoS$_2$/GaAs heterojunctions [9], have attracted considerable attention recently. Photodetectors based on van der Waals (vdW) heterostructures have also been demonstrated [10, 11]. However, self-driven ‘multicolor’ photodetectors that require no external power source are more difficult to realize. VdW heterostructures, which can be assembled by stacking different two-dimensional (2D) semiconductors with different bandgaps, can combine and exploit the properties of the component materials within a single device. Such structures are therefore candidates for multifunctional optoelectronic systems with superior performance. In contrast to gapless graphene [12], GaSe [13] and InSe [14] and monolayers of the transition metal dichalcogenides (TMDCs) [15, 16], are direct band gap semiconductors. High performance photodetectors based on few-layered p-type GaSe or n-type InSe have been reported previously [17–19]. In addition to their response to visible light, the photodetector of 2D GaSe photodetectors [13] can extend into the ultraviolet (UV) region, while InSe nanosheets show strong near-infrared (NIR) photoluminescence (PL) emission and photodetectors [20]. These results suggest that a heterojunction based on 2D p-GaSe and n-InSe could be used for photodetection over a still broader spectral range.

Although vdW heterostructures with metal electrodes have been studied extensively and demonstrate interesting optoelectronic and electronic properties [21, 22], their response time ranges from milliseconds [23] to seconds [24]. To fabricate faster, higher-performance devices, it is essential that the optically active layers have good interfaces and Ohmic contacts. In contrast to metal-contacted photodetectors, the near perfect optical transparency and the unique electronic properties of graphene make it an ideal electrode for multilayer, ‘vertical’ vdW heterostructures as it can act as a short, atomically thin charge extraction channel with a large active area, thus enabling both fast and efficient photodetector [19]. An effective method to create faster vdW heterostructure photodetectors is therefore to sandwich the heterojunction between two layers of graphene, which act as electrodes. These heterostructures can be fabricated with clean interfaces free from dangling bonds, with low defect density and without the Fermi-level pinning that often occurs when metal contacts are directly deposited onto a semiconductor surface.

Here we report on graphene contacted p-GaSe/n-InSe heterojunctions. A typical device structure is shown schematically in figure 1(a). A GaSe layer is placed directly on top of the InSe sheet. This sequence of layers ensures that photons of energy $h\nu < 2$ eV are transmitted through the wide band gap energy GaSe ($E_g = 2.05$ eV at 300 K) and can excite electron–hole pairs in the smaller band gap InSe ($E_g = 1.26$ eV at 300 K). This large area ($\sim 50 \mu m^2$) p-GaSe/n-InSe heterojunction exhibits a strong self-driven photoresponse ranging from the UV to NIR due to the built-in potential in the heterojunction, the type–II band alignment between the two layered crystals [25] and their distinctive band gap energies. Furthermore, using graphene rather than metals as electrodes enable a response time as short as 1.85 μs, i.e. significantly faster than that reported recently for vdW diode-like photodetectors [10, 22, 23], and 3–5 orders of magnitude faster than previously reported for photodetectors based on GaSe [13, 26, 27] or InSe alone [19, 28], which usually have a slow response due to the presence of carrier traps in the relatively long active region of the detector [1, 29, 30].

Results and discussion

Figure 1(b) shows high-resolution transmission electron microscopy images and electron diffraction patterns of the β-GaSe and β-InSe layers. These have high crystalline quality and in-plane hexagonal symmetry. Their crystal structure consists of Se–M–M–Se (M represents Ga- and In-atoms) layers, as shown in the supplementary information figure S1, available online at stacks.iop.org/NANO/28/27LT01/mmedia. The measured in-plane lattice constants of GaSe and InSe are $a = 0.37$ and 0.4 nm, respectively. The separations of two neighboring tetralayers of GaSe and InSe are $d = 0.9$ and 0.84 nm, respectively. For the fabrication of the heterostructure, graphene microstamps were first transferred onto a fused silica substrate to form one electrode. The InSe flake was mechanically exfoliated using adhesive tape from bulk single crystals onto a stamp and then transferred onto the graphene electrode. Using the same method, the GaSe sheet was transferred on top of the InSe sheet. Finally, a second graphene microstamp was transferred onto the GaSe sheet to form the top electrode (see also the supplementary information). Room temperature measurements of the electrical properties of the heterojunction diode reveal strong rectification in the current–voltage (I–V) characteristics, with a larger current passing when the p-type GaSe is positively biased relative to n-type InSe (figure 1(d)). The rectification ratio, defined as the ratio of the forward/reverse current, reaches $\sim 10^5$ at $V_{ds} = +2$–2 V (figure 1(d), inset), demonstrating that a good p–n diode is formed within the atomically thin GaSe/InSe heterojunction.

Figure 2 shows the dependence of the I–V characteristics on light intensity P ranging from 0 to 50 mW cm$^{-2}$. The source–drain current I_{ds} increases with increasing P (figure 2(a)) and the photocurrent I_{ph} exhibits sublinear behavior, i.e. $I_{ph} \propto P^\alpha$, where $\alpha = 0.84, 0.80$ and 0.45 at source–drain voltages of $V_{ds} = -2$, 0 and 2 V, respectively (figure 2(b)). A similar sublinear response has also been reported for other nanomaterials, such as ZnO [31] and GaN nanowires [32], WS$_2$/graphene [30] and MoS$_2$/WS$_2$ heterostructures [33]. This response suggests a decrease of the recombination time of carriers with increasing P due to Auger recombination processes. We also note that in forward bias, due to the high injection of majority carriers across the junction, Auger recombination could be enhanced thus leading to a different power dependence of the photocurrent.

Figures 2(c) and (d) plot the photoresponsivity ($R = I_{ph}/PS$) and detectivity ($D' = RS^{1/2}/(2eI_{dark})^{1/2}$) of the heterojunction at different applied voltages as a function of incident light intensity. Here S is the in-plane area (50 μm2) of the
device, e is the electron charge and I_{dark} is the dark current. Both R and D^* increase with decreasing light intensity, consistent with the sublinear behavior of the photocurrent. The decrease of R with increasing P is common to many photodetectors. It suggests a decrease of the recombination time of carriers with increasing P due Auger recombination processes; further, an increasing P can also increase the carrier transit time due to increased carrier scattering.

The response of a photodetector is determined by a combination of several processes, including the excitation, recombination, and diffusion of carriers. Due to the built-in potential of the heterojunction and the type II band alignment (figure 3(a)), at zero bias the photocreated electrons and holes are swept in opposite directions across the junction into the graphene electrodes (figure 3(b)). We estimate that the built-in potential of the heterostructure is about 0.6 V (see supplementary information, figure S2). Thus our devices can operate at zero bias with a photoresponsivity of up to $R = 21 \text{ mA W}^{-1}$ with corresponding detectivity $D^* = 2.2 \times 10^{12}$ Jones at $\lambda = 410 \text{ nm}$. The systematic decrease of R and D^* with increasing P can arise from stronger Coulomb interactions between the photogenerated carriers and enhanced radiative/non-radiative recombination. A reverse bias voltage increases I_{ph} and R due to the increased electric field in the junction, which decreases the carrier transit time, resulting in reduced carrier recombination (figure 3(c)). We also note that I_{ph} and R are strongly enhanced in applied forward biases beyond the open circuit voltage V_{oc} (e.g. $I_{\text{ds}} = 0$) and at high V. In this regime, due to the high injection of majority carriers across the junction, the influence of carrier traps is weaker and a larger number of photogenerated carriers are effectively extracted across the thin layers into the graphene electrodes (figures 3(d) and (e)).

In our devices, a photoresponsivity of up to $R = 350 \text{ A W}^{-1}$ is obtained at $V_{\text{ds}} = 2 \text{ V}$ with an illumination intensity $P = 0.025 \text{ mW cm}^{-2}$ and $\lambda = 410 \text{ nm}$. This value of R is 2–3 orders of magnitude larger than for heterojunction photodetectors based on TMDCs such as MoS$_2$/WSe$_2$.

Figure 1. Schematic diagram and current–voltage I–V characteristic of the p-GaSe/n-InSe heterojunction diode. (a) Schematic diagram of the p-GaSe/n-InSe heterojunction diode. (b) High-resolution TEM image of the GaSe (top left) and InSe (bottom left), respectively. Images on the right show the corresponding electron-beam diffraction patterns of GaSe and InSe. (c) AFM image of the device. The inset shows the thickness of the different layers. (d) The I–V characteristic of the p-GaSe/n-InSe heterojunction diode at room temperature. The inset shows the rectification ratio as a function of the source–drain voltage V_{ds}.

Nanotechnology 28 (2017) 27LT01
Figure 2. Power-dependent optoelectronic characterization at different applied voltages V_{ds}. (a) Typical I_d curves of the p-$GaSe/n$-$InSe$ heterojunction diode with illumination at various excitation intensities ($P = 0, 0.025, 0.5, 2.5, 10, 25, 50$ mW cm$^{-2}$) and wavelength $\lambda = 410$ nm at room temperature. (b) Photocurrent as a function of the illumination intensity at different V_{ds} (forward bias $V_{ds} = 2$ V, zero bias $V_{ds} = 0$ V and reverse bias $V_{ds} = −2$ V). The solid lines are fits to the data. (c), (d) Photoresponsivity R (c) and detectivity D^* (d) of the heterojunction diode as a function of the illumination intensity P at different V_{ds} ($V_{ds} = 2, 0, −2$ V). The spot size of the laser beam is about 0.2 mm2, which is much larger than the device size.

Figure 3. Band alignment at the interface of the p-$GaSe/n$-$InSe$ heterojunction. (a) Band alignment for isolated n-$InSe$ and p-$GaSe$ layers. Electron affinities of InSe and GaSe are $\chi = −4.6$ and $−3.7$ eV, respectively. The conduction minimum (CB) of GaSe lies above that of InSe by $ΔE_c = 0.9$ eV whereas the valence band (VB) edge of InSe lies below ($ΔE_v = −0.1$ eV) that of the larger band gap GaSe, resulting in a type II band alignment. (b)–(e) Schematic band alignment at the interface of the heterojunction at different applied voltages V_{ds} (reverse bias (c), zero bias (b) and forward bias (d), (e)). V_{FB} is the voltage corresponding to the flat band condition.
The corresponding detectivity is estimated to be $D^* = 3.7 \times 10^{12}$ Jones, which is two orders of magnitude higher than that of InGaAs/InGaP-based [35] and MoS$_2$-based [36] photodetectors, and is similar to that of Si p–n junction photodetectors [37]. These high R and D^* values indicate that the p-GaSe/n-InSe vertical heterojunction is extremely sensitive to small optical input signals. Furthermore, these devices can operate with no externally applied voltage, thus they have potential for applications that require miniaturized devices with minimal energy consumption.

The spectral response of the p-GaSe/n-InSe heterojunction in figure 4(a) demonstrates a strong photoresponsivity over the range $\lambda = 270$–920 nm, from UV to NIR, under both reverse and zero biases. The photoresponsivity in both reverse bias, $V_{ds} = -2$ V, and zero bias display a similar wavelength dependence. The peak in the photoresponsivity between 400 and 500 nm corresponds to excitations between the p_{xy}-like orbitals at the top of the valence band of GaSe and the minimum of the conduction band of InSe. The UV response at $\lambda = 270$ and 350 nm is due to interband optical absorption in the GaSe layer, as for the case of GaSe-based photodetectors [13, 38]. The photoresponse in the NIR wavelength range arises from interband transitions in the InSe layer, which has a smaller band gap of 1.26 eV at room temperature [20]. To elucidate the role of graphene in our measurements, we have compared the photocurrent spectra of GaSe- and InSe-based photodetectors with metal and graphene electrodes, see figure S3 in the supplementary information. A larger photoresponse was observed in photodetectors based on graphene electrodes. Based on the photocurrent and incident laser power, we can determine the external quantum efficiency, EQE, of the photon to electron conversion (figure 4(a)). The EQE $(=hcR/e\lambda)$ is defined as the ratio of the number of carriers collected by the electrodes to the number of incident photons, and is wavelength dependent. At zero bias, the device has a maximum EQE of 9.3% at $\lambda = 410$ nm, higher than for monolayer MoS$_2$/Si p–n diodes [39].

To further explore the origin of the photoresponse, photocurrent maps were acquired at both zero and reverse biases. Figure 4(b) shows an optical microscope image of the
Figure 5. Response time and photo-switching of the p-GaSe/n-InSe heterojunction diode. (a), (b) Temporal dependence of the photocurrent and times τ_r and τ_d at $V_{ds} = 0$ V (a) and $V_{ds} = -2$ V (b) at room temperature. The red solid lines are fits to the data. (c), (d) Source–drain current I_{ds} as a function of time with photoswitching at $V_{ds} = 0$ V (c) and $V_{ds} = -2$ V (d) under illumination with different wavelengths ($\lambda = 270, 350, 410, 485, \text{and} 570$ nm) and light intensity $P = 1$ mW cm$^{-2}$. The spot size of the laser beam is about 0.2 mm2.

Gr/GaSe/InSe/Gr heterostructure depicting the relative positions of the GaSe and InSe layers and of the graphene electrodes. The corresponding normalized photocurrent maps at zero and reverse biases with $\lambda = 410$ nm laser excitation (20 μW) are shown in figures 4(c) and (d), respectively. To distinguish the different parts of the heterostructure, the GaSe sheet region is outlined in green, the InSe sheet region in purple, and the top and bottom graphene electrodes in solid and dotted gold lines, respectively. The photocurrent map shows that the photosensitive region corresponds to the area where the four component layers (Gr/GaSe/InSe/Gr) are superimposed and demonstrates the formation of a p–n junction across the area of the GaSe/InSe interface and the efficient extraction of carriers into the graphene electrodes. The weak photocurrent from the non-overlapping regions shows that the photogenerated carriers in the regions outside the p–n junction are separated and extracted less efficiently, even under a reverse bias $V_{ds} = -2$ V (figure 4(d)).

The response time is another important indicator of the performance of a photodetector. To assess their behavior in the time domain, the devices were illuminated with pulsed light generated by a light-emitting diode ($\lambda = 470$ nm) powered by a square-wave signal generator. As shown in figure 5(a), the dynamic response of the photocurrent at $V_{ds} = 0$ V is described well by the equations $I(t) = I_0 [1 - \exp(-t/\tau)]$ and $I(t) = I_0 \exp(-t/\tau_d)$, where $\tau_r = 5.97$ μs and $\tau_d = 5.66$ μs are the rise- and decay-time constants. The even faster photoresponse at $V_{ds} = -2$ V with $\tau_r = 1.85$ μs and $\tau_d = 2.05$ μs (figure 5(b)) is due to the enhanced electric field in reverse bias. Figures 5(c) and (d) show that the photocurrent can be switched on and off repeatedly and reproducibly with a square-wave modulation of the light intensity for different laser wavelengths ($\lambda = 270, 350, 410, 485, \text{and} 570$ nm) at a power $P = 1$ mW cm$^{-2}$. Similar switching behavior is observed for NIR photo-excitation ($\lambda = 920$ nm) under different illumination intensities for both zero and reverse biases (see supplementary information, figure S4). ON/OFF ratios up to 10^3 are observed, demonstrating that the heterojunction can be used as a sensitive and fast photodetector. The measured response times are significantly faster than those recently reported for vdW heterojunction photodetectors [10, 19, 23, 24, 40] and Si-based heterojunction photodetectors [41, 42]. We also note that the measured response time is limited by the RC-time of our instrument and hence that a faster response could be obtained by improving the measuring circuit [43, 44].
Conclusion

In conclusion, we have reported on a novel vdW multi-layer heterostructure that combines several 2D vdW crystals, i.e. graphene and the metal monochalcogenide InSe and GaSe layered semiconductors. The latter present a number of features that distinguish them from the widely explored TMDCs. In particular, they have a type II band alignment and have distinctive spectral response. We have exploited these features and the low electrical resistance and optical transparency of monolayer graphene electrodes to fabricate a junction diode that can adsorb light over a broad spectral range, from the ultraviolet, visible and infrared, and in which the photo-generated carriers can be efficiently and quickly extracted from the InSe/GaSe heterostructure even when no external voltage is applied. The low or zero energy consumption, simple heterostructure design and fast response time down to \(\sim 2 \mu s \) are notable important features of these nanometer-scale devices. Our results will stimulate further research into the science and technology of these heterostructures, which have the potential for a wide range of applications.

Acknowledgments

This work was supported by ‘973 Program’ No. 2014CB643903, by the NSFC Grant No. 61225021, 11474272, 11174272, and 11404324, by the EU Graphene Flagship Project, and the Engineering and Physical Sciences Research Council (Grant No. EP/M012700/1). The Project was also sponsored by K C Wong Education Foundation.

ORCID

Dong Zhang
https://orcid.org/0000-0002-4227-665X

References

[21] Lee C-H et al 2014 Atomically thin \(p-n \) junctions with van der Waals heterointerfaces Nat. Nanotechnol. 9 676–81
[23] Pezeski A, Shokouh S H H, Nazari T, Oh K and Im S 2016 Electric and photovoltaic behavior of a few-layer \(\alpha\text{-MoTe}_{2}/\alpha\text{-MoS}_{2} \) dichalcogenide heterojunction Adv. Mater. 28 3216–22

Lopez-Sanchez O, Alarcón Llado E, Koman V, Fontcuberta i Morral A, Radenovic A and Kis A 2014 Light generation and harvesting in a van der Waals heterostructure ACS Nano 8 3042–8

Ye L, Li H, Chen Z and Xu J 2016 Near-infrared photodetector based on MoS2/black phosphorus heterojunction ACS Photon. 3 692–9

